Semigroups of row-monomial matrices
نویسندگان
چکیده
منابع مشابه
Bounded Semigroups of Matrices
In this note are proved two conjectures of Daubechies and Lagarias. The first asserts that if Z is a bounded set of matrices such that all left infinite products converge, then 8 generates a bounded semigroup. The second asserts the equality of two differently defined joint spectral radii for a bounded set of matrices. One definition involves the conventional spectral radius, and one involves t...
متن کاملRow Products of Random Matrices
Let ∆1, . . . ,∆K be d × n matrices. We define the row product of these matrices as a d × n matrix, whose rows are entry-wise products of rows of ∆1, . . . ,∆K . This construction arises in certain computer science problems. We study the question, to which extent the spectral and geometric properties of the row product of independent random matrices resemble those properties for a d × n matrix ...
متن کاملEigenvalues and eigenvectors of monomial matrices
Spectral properties of special matrices matrices have been widely applied. We focus on monomial matrices over a finite field Fp, p 6= 2. We describe a way to find the minimal annihilating polynomial, a set of linearly independent eigenvectors.
متن کاملEstimation of matrices with row sparsity
An increasing number of applications is concerned with recovering a sparsity can be defined in terms of lq balls for q 2 [0, 2), defined as Bq(s) = { v = (vi) 2 R2 : n2 ∑
متن کاملRow and Column Distributions of Letter Matrices
A letter matrix is an n-by-n matrix whose entries are n symbols, each appearing n times. The row (column) distribution of a letter matrix is an n-by-n nonnegative integer matrix that tells how many of each letter are in each row (column). A row distribution R and a column distribution C are compatible if there exits a letter matrix A whose row distribution is R and whose column distribution is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1978
ISSN: 0021-8693
DOI: 10.1016/0021-8693(78)90175-8